Inscríbete y crea tu propia colección de obras y artículos
Fatiga de materiales
En ingeniería y, en especial, en Ciencia de materiales, la fatiga de materiales se refiere a un fenómeno por el cual la rotura de los materiales bajo cargas dinámicas cíclicas se produce más fácilmente que con cargas estáticas. Un ejemplo de ello se tiene en un alambre: flexionándolo repetidamente se rompe con facilidad. La fatiga es una forma de rotura que ocurre en estructuras sometidas a tensiones dinámicas y fluctuantes (puentes, Aviones, etc.). Puede ocurrir a una tensión menor que la Resistencia a tracción o el límite elástico para una carga estática. Es muy importante ya que es la primera causa de rotura de los materiales metálicos (aproximadamente el 90%), aunque también ocurre en Polímeros y cerámicas.
La rotura por fatiga tiene aspecto Frágil aun en metales dúctiles, puesto que no hay apenas deformación plástica asociada a la rotura. El proceso consiste en un inicio, y posterior propagación, de fisuras. La superficie de fractura es perpendicular a la dirección del esfuerzo. Aunque es conocido desde antiguo, este comportamiento no fue de interés para los ingenieros hasta mediados del siglo XIX, momento en el cual comenzaron a producirse roturas en los ejes de las ruedas de los trenes que pugnaban, por aquel entonces, por imponerse como medio de locomoción al amparo de la incipiente revolución industrial.
Teorías sobre la fatiga
Para explicar el fenómeno se propusieron teorías que justificaban la pérdida de resistencia mecánica en la alteración de la estructura interna del acero por campos magnéticos o por el propio giro del eje. Por absurdas que puedan parecer estas teorías, hay que tener en cuenta que por entonces los conocimientos relativos a la estructura interna de los materiales eran muy limitados, aunque se sabía que el proceso de fabricación condicionaba la textura del material confiriéndole unas determinadas propiedades.
No es extraño entonces que se razonara que la rotura inesperada se produjera por la transformación de la estructura «fibrosa» del acero en una estructura «cristalina», sin que los mismos que defendían estas teorías supieran muy bien a qué se referían.
Hacia 1845, Rankine demostró que la reducción de las concentraciones de tensiones alargaba la vida del eje. Posteriormente, hacia 1860, Wöhler desarrolló diversas máquinas de ensayo para el estudio sistemático del fenómeno, una de las cuales, la probeta rotatoria, inspira los actuales ensayos de fatiga de materiales férricos.
Wöhler extrajo dos conclusiones de aquellos ensayos: la primera, que las fuerzas necesarias para provocar la rotura con cargas dinámicas son muy inferiores a las necesarias en el caso estático, y la segunda, que existe un umbral por debajo del cual las probetas no se rompían (Límite de fatiga).
Ya en el siglo XX, Humfrey y Ewing observaron que, bajo cargas dinámicas, aparecían deformaciones por deslizamiento similares a las obtenidas en el caso estático, de modo que el progreso de dichas líneas era el que conducía a la rotura. Posteriormente, Hanson y Gough introdujeron la hipótesis del endurecimiento por deformación (acritud) para explicar la existencia del límite de fatiga, de modo que con cargas pequeñas el endurecimiento llegaba a compensar y detener el avance del deslizamiento.
Actualmente, aunque se acepta la teoría del endurecimiento/deslizamiento, no existe una formulación cuantitativa que permita realizar un cálculo fiable. No obstante, la multitud de datos disponibles, especialmente para materiales férricos y otros materiales metálicos, ha permitido desarrollar métodos de cálculo para el diseño de piezas confiables. Este no es el caso de materiales de aparición reciente, para los que es necesaria la fabricación y el ensayo de prototipos.
Tensiones cíclicas
La tensión puede ser axial (tensión y compresión), de flexión o torsional. En general, son posibles tres modos distintos de tensión fluctuante en el tiempo:
- Representado esquemáticamente por una Onda senoidal del tiempo, en la que la amplitud es simétrica y varía de un valor máximo a un mínimo igual a la tensión aplicada. Se denomina ciclo de carga invertida.
- Denominado ciclo de carga repetida, los máximos y mínimos son asimétricos con respecto al nivel cero de carga.
- Aleatorio: el nivel de tensión puede variar al azar en amplitud y frecuencia.
La amplitud de la tensión varía alrededor de un valor medio, el promedio de las tensiones máxima y mínima en cada ciclo:
El intervalo de tensiones es la diferencia entre tensión máxima y mínima
La amplitud de tensión es la mitad del intervalo de tensiones
El cociente de tensiones R es el cociente entre las amplitudes mínima y máxima
Por convención, los esfuerzos a tracción son positivos y los de compresión son negativos. Para el caso de un ciclo con inversión completa de carga, el valor de R es igual a -1.
Curva S-N
Estas curvas se obtienen a través de una serie de ensayos donde una Probeta del material se somete a tensiones cíclicas con una amplitud máxima relativamente grande (aproximadamente 2/3 de la resistencia estática a tracción). Se cuentan los ciclos hasta rotura. Este procedimiento se repite en otras probetas a amplitudes máximas decrecientes.
Los resultados se representan en un diagrama de tensión, S, frente al logaritmo del número N de ciclos hasta la rotura para cada una de las probetas. Los valores de S se toman normalmente como amplitudes de la tensión .
Se pueden obtener dos tipos de curvas S-N. A mayor tensión, menor número de ciclos hasta rotura. En algunas aleaciones férreas y en aleaciones de titanio, la curva S-N se hace horizontal para valores grandes de N, es decir, existe una tensión límite, denominada Límite de fatiga, por debajo del cual la rotura por fatiga no ocurrirá.
Muchas de las aleaciones no férreas (aluminio, cobre, magnesio, etc.) no tienen un Límite de fatiga, dado que la curva S-N continúa decreciendo al aumentar N. Por consiguiente, la rotura por fatiga ocurrirá independientemente de la magnitud de la tensión máxima aplicada. Para estos materiales, la respuesta a fatiga se especifica mediante la resistencia a la fatiga que se define como el nivel de tensión que produce la rotura después de un determinado número de ciclos. Otro parámetro importante que caracteriza el comportamiento a fatiga de un material es la vida a fatiga Nf. Es el número de ciclos para producir una rotura a un nivel especificado de tensiones.
Desafortunadamente, existe una diferencia notable entre la teoría y la realidad. Esto conduce a incertidumbres significativas en el diseño cuando la vida a fatiga o el límite de fatiga son considerados. La dispersión en los resultados es una consecuencia de la sensibilidad de la fatiga a varios parámetros del ensayo y del material que son imposibles de controlar de forma precisa. Estos parámetros incluyen la fabricación de las probetas y la preparación de las superficies, variables metalúrgicas, alineamiento de la probeta en el equipo de ensayos, tensión media y frecuencia del ensayo.
Aproximadamente la mitad de las probetas ensayadas se rompen a niveles de tensión que están cerca del 25% por debajo de la curva.
Se han desarrollado técnicas estadísticas y se han utilizado para manejar este fallo en términos de probabilidades. Una manera adecuada de presentar los resultados tratados de esta manera es con una serie de curvas de probabilidad constante.
Fatiga de bajo número de ciclos (oligofatiga) < ciclos.
Fatiga de alto número de ciclos > ciclos.
Inicio y propagación de la grieta
El proceso de rotura por fatiga se desarrolla a partir del inicio de la grieta y se continúa con su propagación y la rotura final.
Inicio
Las grietas que originan la rotura o fractura casi siempre nuclear sobre la superficie en un punto donde existen concentraciones de tensión (originadas por diseño o acabados, ver Factores).
Las cargas cíclicas pueden producir discontinuidades superficiales microscópicas a partir de escalones producidos por deslizamiento de Dislocaciónes, los cuales actuarán como concentradores de la tensión y, por tanto, como lugares de nucleación de grietas.
Propagación
- Etapa I: una vez nucleada una grieta, entonces se propaga muy lentamente y, en metales policristalinos, a lo largo de planos cristalográficos de Tensión de cizalladura alta; las grietas normalmente se extienden en pocos granos en esta fase.
- Etapa II: la velocidad de extensión de la grieta aumenta de manera vertiginosa y en este punto la grieta deja de crecer en el eje del esfuerzo aplicado para comenzar a crecer en dirección perpendicular al esfuerzo aplicado. La grieta crece por un proceso de enromamiento y agudizamiento de la punta a causa de los ciclos de tensión.
Rotura
Al mismo tiempo que la grieta aumenta en anchura, el extremo avanza por continua deformación por cizalladura hasta que alcanza una configuración enromada. Se alcanza una dimensión crítica de la grieta y se produce la rotura.
La región de una superficie de fractura que se formó durante la etapa II de propagación puede caracterizarse por dos tipos de marcas, denominadas marcas de playa y estrías. Ambas indican la posición del extremo de la grieta en diferentes instantes y tienen el aspecto de crestas concéntricas que se expanden desde los puntos de iniciación. Las marcas de playa son macroscópicas y pueden verse a simple vista.
Las marcas de playa y estrías no aparecen en roturas rápidas.
Velocidad de propagación
Los resultados de los estudios de fatiga han mostrado que la vida de un componente estructural puede relacionarse con la velocidad de crecimiento de la grieta. La velocidad de propagación de la grieta es una función del nivel de tensión y de la amplitud de la misma.
Dónde:
- A y m son constantes para un determinado material
- K Factor de intensidad de tensiones
- pendiente de la curva de velocidad de crecimiento
El valor de m normalmente está comprendido entre 1 y 6.
o bien
Desarrollando estas expresiones a partir de gráficas generadas por ellas mismas, se puede llegar a la siguiente ecuación:
Dónde:
- Número de ciclos hasta rotura
- Y Parámetro independiente de la longitud de la grieta
- m y A Siguen siendo parámetros definidos por el material
- Es la longitud crítica de la grieta
- Longitud de grieta inicial
se puede calcular por:
Dónde:
- Es la tenacidad de fractura de deformaciones planas.
Estas fórmulas fueron generadas por Paul C. Paris en 1961 realizando una gráfica logarítmica log-log de la velocidad de crecimiento de grieta contra el factor de intensidad de tensiones mostrando una relación lineal en la gráfica. Utilizando esta gráfica se pueden realizar predicciones cuantitativas sobre la vida residual de una probeta dado un tamaño de grieta particular. Se encuentra así el comienzo de la iniciación o iniciación rápida de grieta.
Factores que intervienen
Son diversos los factores que intervienen en un proceso de rotura por fatiga a parte de las tensiones aplicadas. Así pues, el diseño, tratamiento superficial y endurecimiento superficial pueden tener una importancia relativa.
Diseño
El diseño tiene una influencia grande en la rotura de fatiga. Cualquier discontinuidad geométrica actúa como concentradora de tensiones y es por donde puede nuclear la grieta de fatiga. Cuanto más aguda es la discontinuidad, más severa es la concentración de tensiones.
La probabilidad de rotura por fatiga puede ser reducida evitando estas irregularidades estructurales, o sea, realizando modificaciones en el diseño, eliminando cambios bruscos en el contorno que conduzcan a cantos vivos, por ejemplo, exigiendo superficies redondeadas con radios de curvatura grandes.
Tratamientos superficiales
En las operaciones de mecanizado, se producen pequeñas rayas y surcos en la superficie de la pieza por acción del corte. Estas marcas limitan la vida a fatiga pues son pequeñas grietas las cuales son mucho más fáciles de aumentar. Mejorando el acabado superficial mediante pulido aumenta la vida a fatiga.
Uno de los métodos más efectivos de aumentar el rendimiento es mediante esfuerzos residuales de compresión dentro de una capa delgada superficial. Cualquier tensión externa de tracción es parcialmente contrarrestada y reducida en magnitud por el esfuerzo residual de compresión. El efecto neto es que la probabilidad de nucleación de la grieta, y por tanto de rotura por fatiga se reduce.
Este proceso se llama «granallado» o «perdigonado». Partículas pequeñas y duras con diámetros del intervalo de 0,1 a 1,0 mm son proyectadas a altas velocidades sobre la superficie a tratar. Esta deformación induce tensiones residuales de compresión.
Endurecimiento superficial
Es una técnica por la cual se aumenta tanto la dureza superficial como la vida a fatiga de los Aceros aleados. Esto se lleva a cabo mediante procesos de carburación y nitruración, en los cuales un componente es expuesto a una atmósfera rica en carbono o en nitrógeno a temperaturas elevadas. Una capa superficial rica en carbono en nitrógeno es introducida por difusión atómica a partir de la fase gaseosa. Esta capa es normalmente de 1mm de profundidad y es más dura que el material del núcleo. La mejora en las propiedades de fatiga proviene del aumento de dureza dentro de la capa, así como de las tensiones residuales de compresión que se originan en el proceso de cementación y nitruración.
Influencia del medio
El medio puede afectar el comportamiento a fatiga de los materiales. Hay dos tipos de fatiga por el medio: fatiga térmica y fatiga con corrosión.
Fatiga térmica
La fatiga térmica se induce normalmente a temperaturas elevadas debido a tensiones térmicas fluctuantes; no es necesario que estén presentes tensiones mecánicas de origen externo. La causa de estas tensiones térmicas es la restricción a la dilatación y o contracción que normalmente ocurren en piezas estructurales sometidas a variaciones de temperatura. La magnitud de la tensión térmica resultante debido a un cambio de temperatura depende del coeficiente de dilatación térmica y del módulo de elasticidad. Se rige por la siguiente expresión:
Dónde:
- Tensión térmica
- Coeficiente de dilatación térmica
- Modulo de elasticidad
- Incremento de temperatura
Fatiga con corrosión
La fatiga con corrosión ocurre por acción de una tensión cíclica y ataque químico simultáneo. Lógicamente los medios corrosivos tienen una influencia negativa y reducen la vida a fatiga, incluso la atmósfera normal afecta a algunos materiales. A consecuencia pueden producirse pequeñas fisuras o picaduras que se comportarán como concentradoras de tensiones originando grietas. La de propagación también aumenta en el medio corrosivo puesto que el medio corrosivo también corroerá el interior de la grieta produciendo nuevos concentradores de tensión.
Referencias
Referencias e información de imágenes pulsando en ellas. |
Wikipedia, con licencia CC-by-sa |